The sum of all the natural numbers for which $log_{(4-x)}(x^2 -14x + 45)$ is defined is -
$1$
$2$
$3$
$4$
$\log ab - \log |b| = $
The number ${\log _2}7$ is
The value of $6+\log _{\frac{3}{2}}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \ldots}}}\right)$ is
The set of real values of $x$ for which ${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ is
The sum $\sum \limits_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}$ is equal to :